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Abstract –  

With the growing popularity of blockchain 

technology in the construction industry, smart 

contracts are becoming increasingly common. A 

smart contract is a self-executing contract, which 

contains if-then rules that automatically execute 

certain processes when certain conditions are met. 

Such smart contracts serve as programmable 

blockchain applications. Using blockchain-enabled 

smart contracts, many processes like construction 

contracting and payments can be automated. Since 

research on blockchain-enabled smart contracts in 

the construction industry is still theoretical, 

researchers usually assume that users (e.g. clients, 

contractors) can directly program the conditions in a 

smart contract. However, it is difficult for 

stakeholders to program smart contracts themselves 

due to a lack of knowledge. The smart contracts 

developed by programmers might not fully represent 

stakeholders’ ideas.  

Therefore, this paper proposes an approach that 

illustrates how graphical workflow notations (e.g. 

BPMN, YAWL) can be translated into smart contract 

programming languages (e.g. Solidity, Vyper). In this 

way, non-programmers can also design and generate 

their own smart contracts. To test the feasibility of 

this approach, an illustrative example is presented for 

generating smart contracts displaying automated the 

reporting, checking and payment process of 

construction works. In particular, the smart contracts 

in this example are translated from YAWL graphical 

representations into Solidity smart contract 

languages. Finally, improvements and further 

developments of the approach are discussed in several 

aspects.  
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1 Introduction 

Smart contracts can be used in the construction 

industry for process automation, for processes like 

construction, contracting, or payment. However, the 

applications and uses of smart contracts are still at a 

conceptual level. Moreover, smart contract languages are 

programming languages that are difficult to read, 

understand, or write for the stakeholders of construction 

projects, as they are usually not programmers. In the 

current situation of using smart contracts for system 

development or construction projects in the construction 

industry, two group of actors need to be involved: 

construction stakeholders (e.g. clients and contractors) 

and software programmers. The stakeholders need to 

decide system functionality, capture requirements, 

implement smart contracts and analyze the execution of 

the smart contracts for the system development. On the 

other hand, the programmers need to interpret 

requirements from stakeholders, develop and deploy 

smart contracts, and evaluate the execution of smart 

contracts. Implementation of proper smart contracts is a 

challenge for the non-programmers, which is related to a 

high effort in terms of time and resources. Otherwise, the 

programmers' interpretation could be wrong, leading to 

stakeholders having to deal with the consequences of 

these codes, which stakeholders may not be able to 

understand. The construction industry is not the only area 

with these problems. In the finance area, 60% 

decentralized finance (DeFi) users cannot read or 

understand the source code of smart contracts [12]. 

It is worthy and necessary to develop an approach that 

allows for the automatic translation of human-readable 

texts or graphics into smart contracts. Compared to pure 

text-based languages, graphical representations are more 

intuitive which can simplify complex contexts, enabling 

non-programmers to read, understand, verify and design 

them. This study proposes an approach to translate from 

graphical representations (e.g. BPMN or YAWL) to 

smart contract languages (e.g. Solidity) with a detailed 

explanation of translation and checking steps based on 

the YAWL graphical representation and the Solidity 

smart contract language. As a graphical workflow in 

XML-based format for business processes, YAWL (Yet 

Another Workflow Language) is the language that not 

only has proper formal semantics to check properties for 

272

mailto:xuling.ye@rub.de
mailto:koenig@inf.bi.rub.de


38th International Symposium on Automation and Robotics in Construction (ISARC 2021) 

 

academic purposes, but also supports the control-flow 

patterns for business processes in practice [8]. Solidity is 

currently the most well-known and most common-used 

smart contract language, a language designed for the 

Ethereum blockchain according to the characteristics of 

smart contracts. The approach is tested via a payment 

case in the delivery and acceptance process of certain 

construction works by translating from the YAWL 

representation to Solidity.    

2 Related work 

2.1 Graphical workflow 

A workflow can be defined as “a collection of tasks 

organized to accomplish some business process (e.g., 

processing purchase orders over the phone, provisioning 

telephone service, processing insurance claims)” [6]. To 

express the information, knowledge or systems of a 

business process in a structure by a consistent set of rules, 

different process modeling approaches have been 

proposed, including the Business Process Model and 

Notation (BPMN), the Web Services Business Process 

Execution Language (BPEL), the Event-driven Process 

Chain (EPC), the Yet Another Workflow Language 

(YAWL) and Petri nets [8]. 

As Lohmann et al. [8] pointed out, academics prefer 

languages such as Petri nets, which have proper formal 

semantics to check properties on corresponding models. 

However, practitioners prefer languages such as BPEL, 

EPC and BPMN, which usually lack proper formal 

semantics. As an exception compared to the above 

languages, YAWL originated in academia but has 

actually been used in practice [1]. YAWL supports the 

most common control-flow patterns found in current 

workflow practices, allowing most workflow languages 

to map to YAWL without losing control flow details, 

even languages with high-level structures (such as 

cancellation regions or OR-joins) [8,17].  

Graphical workflows are also used in the construction 

industry to describe data flows and processes, with 

Integration Definition for Function Modeling (IDEF), 

extended EPC, or BPMN being commonly used [3].  

2.2 Smart contract 

A smart contract, which was first proposed by Szabo 

in 1994 [14], is a self-executing digital agreement. After 

Buterin et al. [4] implemented the smart contract concept 

as a blockchain application to write, verify and enforce 

transaction conditions that allows non-currency data 

stored on the Ethereum blockchain platform in 2014, 

smart contracts become popular in research and practice. 

Up to 2020, there are already more than 4,119 papers 

related to smart contract languages, and 24 different 

blockchain platforms are being developed with 101 smart 

contract languages (e.g. Solidity, Vyper) in total [16].  

More and more researchers in the construction 

industry study the possibilities of using smart contracts. 

For example, Penzes [11] pointed out that smart contracts 

in construction can be applied in three directions: 1) 

payment and project management; 2) procurement and 

supply chain management; and 3) BIM and smart asset 

management. Badi et al. [2] investigated the smart 

contract adoption in the construction industry by a survey 

among UK construction practitioners, and conclude that 

smart contracts can be useful in payment, construction 

contract and in general for organization. 

2.3 Research on smart contract generation  

The existing research on smart contract generation 

mainly focuses on using either text-based languages or 

graphical-based languages to translate smart contracts. 

The text-based languages can be natural languages [10, 

15] and other specification languages [7], while the 

graphical-based languages can be BPMN [9, 12], Petri 

nets [19], Unified Modeling Language (UML) [5] or 

Finite State Machine (FSM) [13]. 

Tateishi et al. [15] proposed an approach that 

translates from controlled natural languages to a domain-

specific language for smart contract (DSL4SC), then to 

state chart and finally to executable smart contracts with 

four defined actions: order, ship, arrive and pay by using 

a predefined template. Monteiro et al. [10] introduced a 

prototype method by translating natural language 

processing (i.e. plain text (TXT) or structured text with 

markups (XML or HTML)) to smart contract code. A 

specification language called SPESC designed by He et 

al. [7] defined contract, party, term and type to assist 

smart contract generation. However, a direct translation 

from text-based languages to smart contract languages is 

error-prone, which is not visual and the logic error could 

be difficult to discover.  

Many other researchers focus on translating graphical 

workflows to smart contract languages [5, 9, 12, 13, 19]. 

For example, López-Pintado et al. [9] introduced and 

implemented a blockchain-based BPMN execution 

engine called Caterpillar to generate smart contracts by a 

BPMN-to-Solidity complier. Since BPMN does not have 

a logic checking mechanism like Petri nets, the generated 

smart contracts from BPMN could be error-prone 

without an additional verification step. Skotnica et al. [12] 

proposed a model-driven approach to generate smart 

contracts based on a visual domain-specific language 

called DasContract. It is a complex approach where the 

users not only need to define data structures in a 

programming way and draw BPMN graphics, but also 

define a user form, which could be difficult to use by non-

programmers. Zupan et al. [19] presented a method and a 

prototype tool based on Petri nets for smart contract 
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generation. Using Petri nets to model smart contracts is a 

suitable method to minimize logical errors. However, 

Petri nets cannot specify roles or tasks so well like BPMN 

or YAWL for business process. Lohmann et al. [5] 

proposed to generate smart contracts through UML class 

diagram. Nevertheless, the design of UML class 

diagrams requires some basic programming background. 

Another approach designed by Suvorov and Ulyantsev 

[13] is using FSM synthesis for automatic smart contract 

generation. Using FSM is good for showing the states and 

actions of the smart contracts, but lack role specifications.  

3 Methodology 

3.1 Overview 

It is assumed that a workflow is created in a BPMN 

or YAWL software tool and exported as XML format. 

The XML files serve as an import for the proposed smart 

contract language generator system. The overview of the 

approach is shown in Figure 1.  

 

Figure 1. Overview of methodology 

An XML-format file is generated via a BPMN or 

YAWL software tool, and imported into the proposed 

smart contract language generator system. Such a system 

needs functionalities for parsing, translating and 

checking a workflow. Finally, the generated smart 

contract is exported into the selected format for 

deployment. Even through the XML structure of YAWL 

and BPMN are different, the principle of the generation 

step is the same. YAWL is a graphical representation 

which not only allows logic checking, but is also easy to 

understand by non-programmers. Meanwhile, YAWL 

allows the mapping from most workflow languages 

without losing the details of the control flow. Therefore, 

YAWL is used as a graphical representation for the 

detailed explanation of translation and checking steps in 

the following two subsections. 

3.2 Translation step 

After parsing the data from an XML format file, the 

obtained information is translated into a certain smart 

contract language. To understand the obtained 

information, the structure of the XML format file should 

be explored. Therefore, the XML structure and the format 

explanation of YAWL and its roles are shown as Figure 

2. 

 

Figure 2 The explanation of the YAWL and the 

YAWL roles files 

In the YAWL file, the stored information can be 

divided into two parts: specification and layout. The 

specification stores all the functional information of each 

task specified in the YAWL, where the layout stores all 

the geometrical data of these tasks. To aid the automatic 

translation from YAWL to smart contracts, an action type 

is designed in this method. As shown in Figure 2, the type 

named “Action” is defined in the XML schema 

(xs:schema) of the YAWL file for distinguishing 

different actions in tasks. The actions can be divided into 

three types, namely “view”, “modify” and “pay”. These 

three actions are defined as variables in the root net. Each 

task should declare one and only one variable in the 

“Action” type with one of the three variables to specify 

the action of this task. In this way, tasks can be 

automatically translated with the specified action 

variable. The “view” task specifies that this task is to 

view some information and no data should be changed in 

this task. The “modify” task indicates that the value of 

one or more state variables will be assigned or modified. 

The “pay” task executes automated payment action with 

a specific payment amount from one user address to 
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another user address.  

There are two kinds of deposition in the specification, 

distinguished by with or without the isRootNet attribute. 

The former is the root net that stores the information of 

local variables and process flows, where the latter kind is 

a task storing input variables, output variables, and an 

“Action” type variable. The process flow information is 

stored in the element called processControlElements 

with the flow information of all tasks. The start and end 

tasks are tagged as inputCondition and outputCondition 

elements, respectively. Each task element stores not only 

the join type, split type and role identifier(s) of the current 

task, but also the flow condition and the name of the next 

task.  All roles used in the YAWL file are defined and 

stored in the YAWL roles file, including the identifier, 

the name, the description (which can be used to store the 

Solidity address) and the notes of each role.  

According to the explanation of  the YAWL and its 

roles files shown in Figure 2, the information of local 

variables, roles, tasks with role identifier(s) and variables, 

and process flows can be extracted. The mapping 

relationship of the extracted YAWL information and the 

components of Solidity smart contract language is shown 

in Figure 3.  

 

Figure 3 The component mappings from YAWL 

to Solidity 

Solidity is an object-oriented language, which has 

similar components like all modern programming 

languages and other smart contract languages. All local 

variables defined in the YAWL file can be translated as 

state variables in the Solidity main contract. The roles 

extracted from the YAWL roles file will be defined as 

state variables under address type and be declared as 

modifiers at the same time in the Solidity main contract.  

A Solidity modifier is used to restrict the executing 

conditions of a function. When a modifier is called in a 

function, the function can be executed only when the 

conditions stated in the modifier are satisfied. The 

declared modifiers for roles are used to restrict that only 

certain roles can execute certain functions. The role(s) 

and variables of each task will be translated as modifiers, 

input parameters, return variables and statements based 

on the variable in Action type of each function in the 

Solidity main contract. Since the logic of tasks in YAWL 

and functions in Solidity are different, the output 

variables of tasks are the input parameters of functions. 

The process flows are translated into state variables, an 

enumeration, modifiers and functions in the Solidity 

SCProcessFlow contract, which is a parent contract of 

the main contract, to restrict the executing order of 

functions in the main contract. 

3.3 Checking step 

The aim of the checking step is to verify the 

correctness of the generated smart contracts. In this step, 

certain rules should be defined for verifying the 

translated smart contracts. Eight checking rules of a 

Solidity contract are shown as Figure 4. A translated 

Solidity contract has five basic components: parent 

contract(s), enumerations, state variables, modifiers and 

functions.  

 

Figure 4 Checking rules of the Solidity smart 

contract language 

When a contract is defined based on one or more 

parent contracts, the existence of the parent contract(s) 

should be checked. All the defined component names 

should be unique and valid. A unique name is not the 

same as any other names or keywords in the contract. A 

valid name does not contain any special characters except 

“_”, or start with a digit. The used types should be preset 

or defined. The type of value should be consistent with 

the type of the variable. A declaration of a variable should 
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be in form “type name;” or “type name = value;”. The 

modifiers in a function should be validly defined. As 

mentioned in the previous section, functions translated 

from YAWL tasks should handle one of the “view”, 

“modify” and “pay” actions. A “view” function must not 

change any values of state variables. A “modify” 

function, on the other hand, should have at least one state 

variable modified in this function. In the “pay” function, 

a “payable” keyword must be declared. Moreover, the 

payer address must be payable, the payer’s wallet must 

have at least the payment amount, and the payee address 

must be declared. 

4 Illustrative example 

An example is illustrated via YAWL to graphically 

model a workflow, where the workflow is transferred to 

the Solidity smart contract language. To figure out 

whether using YAWL can explain the whole process for 

automated reporting, checking, and payment of 

construction works, an example is designed in the 

YAWL graphical representation and shown in Figure 5. 

The similar workflow was presented as BPMN in the 

related work [18]. 

 

Figure 5. YAWL graphical representation of the 

example 

The example illustrates the delivery and acceptance 

processes between clients and contractors for a group of 

construction works, which is defined as a billing unit (BU) 

with a total payment amount and a completion date. BUs 

are defined and captured in the billing plan during the 

contract negotiations. After that, the work can be carried 

out. As shown in Figure 5, eight tasks and two roles are 

defined in the example. After certain construction works 

are defined as a BU, the contractor can start to execute 

the task “Start BU” and the corresponding construction 

works. After it is completed, the contractor reports the 

completion of this BU via executing the “Complete BU” 

task. The client checks the BU and determines if there are 

defects regarding the construction works and executes 

the “Check BU with defects” task. If the BU work has no 

defects, the task “Pay BU” should be automatically 

executed, where the client will pay the full payment 

amount of the BU to the contractor. Otherwise, this BU 

will be divided into two parts via a “Divide BU” task. 

The BU_C is the checked and accepted part, which will 

be automatically paid with a predefined payment amount 

via “Pay BU_C” task. The BU_D is the part with defects, 

which will be redefined by client as a new BU with a new 

total payment amount and a new completion date in the 

“Define BU_D”. The contractor can then decide to accept 

this task or not via “Check BU_D” task. The 

corresponding local variables and parameters of each 

task are also shown in the Figure 5. 

4.1 Variables 

The local variables and declared actions in Action 

type for the example are defined as Figure 6. The initial 

values of variables can be either assigned at the 

beginning or later by users. In this case, the bu_id, 

planedPayment and plannedCompletionDate variables 

are assigned in the beginning. The values of “modify” 

and “view” variables should be the same as their names, 

where the value of “pay” variable should be the name of 

payee address variable.  

 

Figure 6 Defined local variables and three 

variables with “Action” type 

The detailed input and output variables of each task 

are presented in Figure 7. In a YAWL task, the values of 

input variables should be assigned before this task, and 

the values of output variables should be assigned in this 

task by users. An Action type variable is declared in each 

task as an input variable to tag the action type. In this 

example, five “modify” tasks, one “view” task and two 

“pay” tasks are defined. In the “Define BU_D” task, the 

values of variables bu_id, plannedPayment and 

plannedComplemetionDate are reassigned.  
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4.2 Implementation  

To test the feasibility of the method, a tool of smart 

contract generation is developed. The implemented smart 

contract generator and the corresponding results of this 

example are shown in Figure 8. This generator can be 

divided into two parts: A) parse & translate, and B) check 

& export. In subparts A1 and A2, YAWL graphical 

representation and YAWL roles should first be loaded. 

After clicking the translation button, the information in 

the YAWL and YAWL roles files is translated into the 

Solidity smart contract language according to the 

translation step, and the generated smart contracts are 

shown in subpart A3. The generated file structure is 

shown as a tree table on the left side of A3, and the 

detailed codes of the corresponding smart contracts are 

shown on the right side of A3. In part B, a tree table and 

error message(s) are generated after checking the 

generated smart contracts, and then the whole contract 

folder can be exported. 

Figure 7 The declared input and output variables of each task in the example 

Figure 8 User Interface of smart contract language generator 
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The generated Solidity smart contract files can be 

simply deployed and tested via the Ethereum Remix in 

the browser. The test result shown in Figure 9 is after 

successfully executing the Start_BU function defined in 

the SC_Example contract. The start date is successfully 

set as “20210627” by the contractor at the address 

“0x08FeC12c561c65363bA3D59a74bA6dfB14828fEe”. 

5 Conclusion and future work 

Smart contracts can automate many construction 

processes, such as contracting, delivery, acceptance and 

payment. However, as smart contracts are programming 

codes, they are difficult to be read, design, program, and 

verify by non-programmers. This paper proposes a 

framework for automatically generating smart contracts 

from graphical representations following four steps of 

parsing, translation, checking and exporting. The YAWL 

graphical representation and Solidity smart contract 

language are used to further explain the translation and 

checking steps. An illustrative example is presented 

through generating Solidity smart contracts from YAWL 

for automated the reporting, checking and payment 

process of construction works between clients and 

contractors. The corresponding implemented smart 

contract generator is illustrated and the execution result 

of the generated smart contracts in the Ethereum Remix 

is also displayed. 

Future studies should consider a more detailed and 

practical development of payment functions. For 

example, in addition to using the currency in the 

blockchain platform, linking with banks via smart 

contracts for automatic payments could be more suitable 

for the current situation. Moreover, more components of 

the Solidity smart contract language (e.g., mappings, 

events, abstract contracts), more smart contract checking 

rules, other graphical representations (e.g., BPMN), and 

other smart contract languages should be further taken 

into account. 

Further testing should be conducted with construction 

stakeholders for feedback on the feasibility of the method 

and the developed tool proposed in this paper. Compared 

with the development of the entire smart contract 

generation system, the development of a plugin 

application or a library can be more extensible, more 

convenient, and more widely used. In addition to 

generating smart contracts from graphical 

representations, another direction, namely translating 

smart contracts to XML files or graphical representations, 

should also be investigated. 

Acknowledgement 

The study was conducted as part of the BIMcontracts 

research project funded by the German Federal Ministry 

for Economic Affairs and Energy (BMWi) within the 

"Smart Data Economy" technology program (project 

number: 01MD19006B). 

Reference 

[1] Adams M., Hofstede A. H. ter, and La Rosa M. 

Open Source Software for Workflow Management: 

The Case of YAWL. IEEE Softw., 28(3): 16–19, 

2011. 

[2] Badi S., Ochieng E., Nasaj M., and Papadaki M. 

Figure 9 The test result in the Ethereum Remix after successfully executing the BU_stated function 

278



38th International Symposium on Automation and Robotics in Construction (ISARC 2021) 

 

Technological, organisational and environmental 

determinants of smart contracts adoption: UK 

construction sector viewpoint. Construction 

Management and Economics, 39(1): 36–54, 2021. 

[3] Borrmann A., König M., Koch C., and Beetz J. 

Building information modeling: Technology 

foundations and industry practice. Springer, Cham, 

Switzerland, 2018. 

[4] Buterin V. A next-generation smart contract and 

decentralized application platform. white paper, 

3(37), 2014. 

[5] G. A. Pierro. Smart-Graph: Graphical 

Representations for Smart Contract on the 

Ethereum Blockchain. In 2021 IEEE International 

Conference on Software Analysis, Evolution and 

Reengineering (SANER): 708–714, Hawaii, US, 

2021. 

[6] Georgakopoulos D., Hornick M., and Sheth A. An 

overview of workflow management: From process 

modeling to workflow automation infrastructure. 

Distrib Parallel Databases, 3(2): 119–153, 1995. 

[7] He X., Qin B., Zhu Y., Chen X., and Liu Y. SPESC: 

A Specification Language for Smart Contracts. In 

2018 IEEE 42nd Annual Computer Software and 

Applications Conference (COMPSAC): 132–137, 

Tokyo, Japan, 2018 - 2018. 

[8] Lohmann N., Verbeek E., and Dijkman R. Petri Net 

Transformations for Business Processes – A Survey. 

In Transactions on Petri Nets and Other Models of 

Concurrency II. Special Issue on Concurrency in 

Process-Aware Information Systems. Springer, 

Berlin, Heidelberg: 46–63, 2009. 

[9] López-Pintado O., García-Bañuelos L., Dumas M., 

Weber I., and Ponomarev A. Caterpillar: A business 

process execution engine on the Ethereum 

blockchain. Softw: Pract Exper, 49(7): 1162–1193, 

2019. 

[10] Monteiro E., Righi R., Kunst R., Da Costa C., and 

Singh D. Combining Natural Language Processing 

and Blockchain for Smart Contract Generation in 

the Accounting and Legal Field. In Intelligent 

human computer interaction. 12th International 

Conference, IHCI 2020, Proceedings, Part I and II: 

307–321, Daegu, South Korea, 2021. 

[11] Penzes B. Blockchain Technology in the 

Construction Industry. Institution of Civil 

Engineers (ICE), London, 2018. 

[12] Skotnica, M., Klicpera, J., & Pergl, R. Towards 

Model-Driven Smart Contract Systems–Code 

Generation and Improving Expressivity of Smart 

Contract Modeling. In EEWC Forum 2020, (online) 

Bozen / Bolzano, Italy, 2020. 

[13] Suvorov D. and Ulyantsev V. Smart Contract 

Design Meets State Machine Synthesis: Case 

Studies. arXiv.org, 2019. 

[14] Szabo N. Smart contracts. Virtual School: 26, 1994. 

[15] Tateishi T., Yoshihama S., Sato N., and Saito S. 

Automatic smart contract generation using 

controlled natural language and template. IBM J. 

Res. & Dev., 63(2/3): 6:1-6:12, 2019. 

[16] Varela-Vaca Á. J. and Quintero A. M. R. Smart 

Contract Languages: A Multivocal Mapping Study. 

ACM Comput. Surv., 54(1): 1–38, 2021. 

[17] W.M.P. van der Aalst and A.H.M. ter Hofstede. 

Workflow patterns: on the expressive power of 

(Petri-net-based) workflow languages. Proceedings 

of the Fourth Workshop on the Practical Use of 

Coloured Petri Nets and CPN Tools (CPN 2002): 

1–20, 2002. 

[18] Ye X. and König M. Framework for Automated 

Billing in the Construction Industry Using BIM and 

Smart Contracts. In Proceedings of the 18th 

International Conference on Computing in Civil 

and Building Engineering. ICCCBE 2020. Springer, 

Cham: 824–838, 2021. 

[19] Zupan N., Kasinathan P., Cuellar J., and Sauer M. 

Secure Smart Contract Generation Based on Petri 

Nets. In Blockchain technology for industry 4.0. 

Secure, decentralized, distributed and trusted 

industry environment. Springer, Singapore: 73–98, 

2020. 

 

 

 

279




