
38th International Symposium on Automation and Robotics in Construction (ISARC 2021)

From the Graphical Representation to the Smart Contract

Language: A Use Case in the Construction Industry

Xuling Ye and Markus König

Department of Civil and Environmental Engineering, Ruhr-University Bochum, Germany

E-mail: xuling.ye@rub.de, koenig@inf.bi.rub.de

Abstract –

With the growing popularity of blockchain

technology in the construction industry, smart

contracts are becoming increasingly common. A

smart contract is a self-executing contract, which

contains if-then rules that automatically execute

certain processes when certain conditions are met.

Such smart contracts serve as programmable

blockchain applications. Using blockchain-enabled

smart contracts, many processes like construction

contracting and payments can be automated. Since

research on blockchain-enabled smart contracts in

the construction industry is still theoretical,

researchers usually assume that users (e.g. clients,

contractors) can directly program the conditions in a

smart contract. However, it is difficult for

stakeholders to program smart contracts themselves

due to a lack of knowledge. The smart contracts

developed by programmers might not fully represent

stakeholders’ ideas.

Therefore, this paper proposes an approach that

illustrates how graphical workflow notations (e.g.

BPMN, YAWL) can be translated into smart contract

programming languages (e.g. Solidity, Vyper). In this

way, non-programmers can also design and generate

their own smart contracts. To test the feasibility of

this approach, an illustrative example is presented for

generating smart contracts displaying automated the

reporting, checking and payment process of

construction works. In particular, the smart contracts

in this example are translated from YAWL graphical

representations into Solidity smart contract

languages. Finally, improvements and further

developments of the approach are discussed in several

aspects.

Keywords –

process modeling; smart contracts; blockchain;

construction industry

1 Introduction

Smart contracts can be used in the construction

industry for process automation, for processes like

construction, contracting, or payment. However, the

applications and uses of smart contracts are still at a

conceptual level. Moreover, smart contract languages are

programming languages that are difficult to read,

understand, or write for the stakeholders of construction

projects, as they are usually not programmers. In the

current situation of using smart contracts for system

development or construction projects in the construction

industry, two group of actors need to be involved:

construction stakeholders (e.g. clients and contractors)

and software programmers. The stakeholders need to

decide system functionality, capture requirements,

implement smart contracts and analyze the execution of

the smart contracts for the system development. On the

other hand, the programmers need to interpret

requirements from stakeholders, develop and deploy

smart contracts, and evaluate the execution of smart

contracts. Implementation of proper smart contracts is a

challenge for the non-programmers, which is related to a

high effort in terms of time and resources. Otherwise, the

programmers' interpretation could be wrong, leading to

stakeholders having to deal with the consequences of

these codes, which stakeholders may not be able to

understand. The construction industry is not the only area

with these problems. In the finance area, 60%

decentralized finance (DeFi) users cannot read or

understand the source code of smart contracts [12].

It is worthy and necessary to develop an approach that

allows for the automatic translation of human-readable

texts or graphics into smart contracts. Compared to pure

text-based languages, graphical representations are more

intuitive which can simplify complex contexts, enabling

non-programmers to read, understand, verify and design

them. This study proposes an approach to translate from

graphical representations (e.g. BPMN or YAWL) to

smart contract languages (e.g. Solidity) with a detailed

explanation of translation and checking steps based on

the YAWL graphical representation and the Solidity

smart contract language. As a graphical workflow in

XML-based format for business processes, YAWL (Yet

Another Workflow Language) is the language that not

only has proper formal semantics to check properties for

272

mailto:xuling.ye@rub.de
mailto:koenig@inf.bi.rub.de

38th International Symposium on Automation and Robotics in Construction (ISARC 2021)

academic purposes, but also supports the control-flow

patterns for business processes in practice [8]. Solidity is

currently the most well-known and most common-used

smart contract language, a language designed for the

Ethereum blockchain according to the characteristics of

smart contracts. The approach is tested via a payment

case in the delivery and acceptance process of certain

construction works by translating from the YAWL

representation to Solidity.

2 Related work

2.1 Graphical workflow

A workflow can be defined as “a collection of tasks

organized to accomplish some business process (e.g.,

processing purchase orders over the phone, provisioning

telephone service, processing insurance claims)” [6]. To

express the information, knowledge or systems of a

business process in a structure by a consistent set of rules,

different process modeling approaches have been

proposed, including the Business Process Model and

Notation (BPMN), the Web Services Business Process

Execution Language (BPEL), the Event-driven Process

Chain (EPC), the Yet Another Workflow Language

(YAWL) and Petri nets [8].

As Lohmann et al. [8] pointed out, academics prefer

languages such as Petri nets, which have proper formal

semantics to check properties on corresponding models.

However, practitioners prefer languages such as BPEL,

EPC and BPMN, which usually lack proper formal

semantics. As an exception compared to the above

languages, YAWL originated in academia but has

actually been used in practice [1]. YAWL supports the

most common control-flow patterns found in current

workflow practices, allowing most workflow languages

to map to YAWL without losing control flow details,

even languages with high-level structures (such as

cancellation regions or OR-joins) [8,17].

Graphical workflows are also used in the construction

industry to describe data flows and processes, with

Integration Definition for Function Modeling (IDEF),

extended EPC, or BPMN being commonly used [3].

2.2 Smart contract

A smart contract, which was first proposed by Szabo

in 1994 [14], is a self-executing digital agreement. After

Buterin et al. [4] implemented the smart contract concept

as a blockchain application to write, verify and enforce

transaction conditions that allows non-currency data

stored on the Ethereum blockchain platform in 2014,

smart contracts become popular in research and practice.

Up to 2020, there are already more than 4,119 papers

related to smart contract languages, and 24 different

blockchain platforms are being developed with 101 smart

contract languages (e.g. Solidity, Vyper) in total [16].

More and more researchers in the construction

industry study the possibilities of using smart contracts.

For example, Penzes [11] pointed out that smart contracts

in construction can be applied in three directions: 1)

payment and project management; 2) procurement and

supply chain management; and 3) BIM and smart asset

management. Badi et al. [2] investigated the smart

contract adoption in the construction industry by a survey

among UK construction practitioners, and conclude that

smart contracts can be useful in payment, construction

contract and in general for organization.

2.3 Research on smart contract generation

The existing research on smart contract generation

mainly focuses on using either text-based languages or

graphical-based languages to translate smart contracts.

The text-based languages can be natural languages [10,

15] and other specification languages [7], while the

graphical-based languages can be BPMN [9, 12], Petri

nets [19], Unified Modeling Language (UML) [5] or

Finite State Machine (FSM) [13].

Tateishi et al. [15] proposed an approach that

translates from controlled natural languages to a domain-

specific language for smart contract (DSL4SC), then to

state chart and finally to executable smart contracts with

four defined actions: order, ship, arrive and pay by using

a predefined template. Monteiro et al. [10] introduced a

prototype method by translating natural language

processing (i.e. plain text (TXT) or structured text with

markups (XML or HTML)) to smart contract code. A

specification language called SPESC designed by He et

al. [7] defined contract, party, term and type to assist

smart contract generation. However, a direct translation

from text-based languages to smart contract languages is

error-prone, which is not visual and the logic error could

be difficult to discover.

Many other researchers focus on translating graphical

workflows to smart contract languages [5, 9, 12, 13, 19].

For example, López-Pintado et al. [9] introduced and

implemented a blockchain-based BPMN execution

engine called Caterpillar to generate smart contracts by a

BPMN-to-Solidity complier. Since BPMN does not have

a logic checking mechanism like Petri nets, the generated

smart contracts from BPMN could be error-prone

without an additional verification step. Skotnica et al. [12]

proposed a model-driven approach to generate smart

contracts based on a visual domain-specific language

called DasContract. It is a complex approach where the

users not only need to define data structures in a

programming way and draw BPMN graphics, but also

define a user form, which could be difficult to use by non-

programmers. Zupan et al. [19] presented a method and a

prototype tool based on Petri nets for smart contract

273

38th International Symposium on Automation and Robotics in Construction (ISARC 2021)

generation. Using Petri nets to model smart contracts is a

suitable method to minimize logical errors. However,

Petri nets cannot specify roles or tasks so well like BPMN

or YAWL for business process. Lohmann et al. [5]

proposed to generate smart contracts through UML class

diagram. Nevertheless, the design of UML class

diagrams requires some basic programming background.

Another approach designed by Suvorov and Ulyantsev

[13] is using FSM synthesis for automatic smart contract

generation. Using FSM is good for showing the states and

actions of the smart contracts, but lack role specifications.

3 Methodology

3.1 Overview

It is assumed that a workflow is created in a BPMN

or YAWL software tool and exported as XML format.

The XML files serve as an import for the proposed smart

contract language generator system. The overview of the

approach is shown in Figure 1.

Figure 1. Overview of methodology

An XML-format file is generated via a BPMN or

YAWL software tool, and imported into the proposed

smart contract language generator system. Such a system

needs functionalities for parsing, translating and

checking a workflow. Finally, the generated smart

contract is exported into the selected format for

deployment. Even through the XML structure of YAWL

and BPMN are different, the principle of the generation

step is the same. YAWL is a graphical representation

which not only allows logic checking, but is also easy to

understand by non-programmers. Meanwhile, YAWL

allows the mapping from most workflow languages

without losing the details of the control flow. Therefore,

YAWL is used as a graphical representation for the

detailed explanation of translation and checking steps in

the following two subsections.

3.2 Translation step

After parsing the data from an XML format file, the

obtained information is translated into a certain smart

contract language. To understand the obtained

information, the structure of the XML format file should

be explored. Therefore, the XML structure and the format

explanation of YAWL and its roles are shown as Figure

2.

Figure 2 The explanation of the YAWL and the

YAWL roles files

In the YAWL file, the stored information can be

divided into two parts: specification and layout. The

specification stores all the functional information of each

task specified in the YAWL, where the layout stores all

the geometrical data of these tasks. To aid the automatic

translation from YAWL to smart contracts, an action type

is designed in this method. As shown in Figure 2, the type

named “Action” is defined in the XML schema

(xs:schema) of the YAWL file for distinguishing

different actions in tasks. The actions can be divided into

three types, namely “view”, “modify” and “pay”. These

three actions are defined as variables in the root net. Each

task should declare one and only one variable in the

“Action” type with one of the three variables to specify

the action of this task. In this way, tasks can be

automatically translated with the specified action

variable. The “view” task specifies that this task is to

view some information and no data should be changed in

this task. The “modify” task indicates that the value of

one or more state variables will be assigned or modified.

The “pay” task executes automated payment action with

a specific payment amount from one user address to

274

38th International Symposium on Automation and Robotics in Construction (ISARC 2021)

another user address.

There are two kinds of deposition in the specification,

distinguished by with or without the isRootNet attribute.

The former is the root net that stores the information of

local variables and process flows, where the latter kind is

a task storing input variables, output variables, and an

“Action” type variable. The process flow information is

stored in the element called processControlElements

with the flow information of all tasks. The start and end

tasks are tagged as inputCondition and outputCondition

elements, respectively. Each task element stores not only

the join type, split type and role identifier(s) of the current

task, but also the flow condition and the name of the next

task. All roles used in the YAWL file are defined and

stored in the YAWL roles file, including the identifier,

the name, the description (which can be used to store the

Solidity address) and the notes of each role.

According to the explanation of the YAWL and its

roles files shown in Figure 2, the information of local

variables, roles, tasks with role identifier(s) and variables,

and process flows can be extracted. The mapping

relationship of the extracted YAWL information and the

components of Solidity smart contract language is shown

in Figure 3.

Figure 3 The component mappings from YAWL

to Solidity

Solidity is an object-oriented language, which has

similar components like all modern programming

languages and other smart contract languages. All local

variables defined in the YAWL file can be translated as

state variables in the Solidity main contract. The roles

extracted from the YAWL roles file will be defined as

state variables under address type and be declared as

modifiers at the same time in the Solidity main contract.

A Solidity modifier is used to restrict the executing

conditions of a function. When a modifier is called in a

function, the function can be executed only when the

conditions stated in the modifier are satisfied. The

declared modifiers for roles are used to restrict that only

certain roles can execute certain functions. The role(s)

and variables of each task will be translated as modifiers,

input parameters, return variables and statements based

on the variable in Action type of each function in the

Solidity main contract. Since the logic of tasks in YAWL

and functions in Solidity are different, the output

variables of tasks are the input parameters of functions.

The process flows are translated into state variables, an

enumeration, modifiers and functions in the Solidity

SCProcessFlow contract, which is a parent contract of

the main contract, to restrict the executing order of

functions in the main contract.

3.3 Checking step

The aim of the checking step is to verify the

correctness of the generated smart contracts. In this step,

certain rules should be defined for verifying the

translated smart contracts. Eight checking rules of a

Solidity contract are shown as Figure 4. A translated

Solidity contract has five basic components: parent

contract(s), enumerations, state variables, modifiers and

functions.

Figure 4 Checking rules of the Solidity smart

contract language

When a contract is defined based on one or more

parent contracts, the existence of the parent contract(s)

should be checked. All the defined component names

should be unique and valid. A unique name is not the

same as any other names or keywords in the contract. A

valid name does not contain any special characters except

“_”, or start with a digit. The used types should be preset

or defined. The type of value should be consistent with

the type of the variable. A declaration of a variable should

275

38th International Symposium on Automation and Robotics in Construction (ISARC 2021)

be in form “type name;” or “type name = value;”. The

modifiers in a function should be validly defined. As

mentioned in the previous section, functions translated

from YAWL tasks should handle one of the “view”,

“modify” and “pay” actions. A “view” function must not

change any values of state variables. A “modify”

function, on the other hand, should have at least one state

variable modified in this function. In the “pay” function,

a “payable” keyword must be declared. Moreover, the

payer address must be payable, the payer’s wallet must

have at least the payment amount, and the payee address

must be declared.

4 Illustrative example

An example is illustrated via YAWL to graphically

model a workflow, where the workflow is transferred to

the Solidity smart contract language. To figure out

whether using YAWL can explain the whole process for

automated reporting, checking, and payment of

construction works, an example is designed in the

YAWL graphical representation and shown in Figure 5.

The similar workflow was presented as BPMN in the

related work [18].

Figure 5. YAWL graphical representation of the

example

The example illustrates the delivery and acceptance

processes between clients and contractors for a group of

construction works, which is defined as a billing unit (BU)

with a total payment amount and a completion date. BUs

are defined and captured in the billing plan during the

contract negotiations. After that, the work can be carried

out. As shown in Figure 5, eight tasks and two roles are

defined in the example. After certain construction works

are defined as a BU, the contractor can start to execute

the task “Start BU” and the corresponding construction

works. After it is completed, the contractor reports the

completion of this BU via executing the “Complete BU”

task. The client checks the BU and determines if there are

defects regarding the construction works and executes

the “Check BU with defects” task. If the BU work has no

defects, the task “Pay BU” should be automatically

executed, where the client will pay the full payment

amount of the BU to the contractor. Otherwise, this BU

will be divided into two parts via a “Divide BU” task.

The BU_C is the checked and accepted part, which will

be automatically paid with a predefined payment amount

via “Pay BU_C” task. The BU_D is the part with defects,

which will be redefined by client as a new BU with a new

total payment amount and a new completion date in the

“Define BU_D”. The contractor can then decide to accept

this task or not via “Check BU_D” task. The

corresponding local variables and parameters of each

task are also shown in the Figure 5.

4.1 Variables

The local variables and declared actions in Action

type for the example are defined as Figure 6. The initial

values of variables can be either assigned at the

beginning or later by users. In this case, the bu_id,

planedPayment and plannedCompletionDate variables

are assigned in the beginning. The values of “modify”

and “view” variables should be the same as their names,

where the value of “pay” variable should be the name of

payee address variable.

Figure 6 Defined local variables and three

variables with “Action” type

The detailed input and output variables of each task

are presented in Figure 7. In a YAWL task, the values of

input variables should be assigned before this task, and

the values of output variables should be assigned in this

task by users. An Action type variable is declared in each

task as an input variable to tag the action type. In this

example, five “modify” tasks, one “view” task and two

“pay” tasks are defined. In the “Define BU_D” task, the

values of variables bu_id, plannedPayment and

plannedComplemetionDate are reassigned.

276

38th International Symposium on Automation and Robotics in Construction (ISARC 2021)

4.2 Implementation

To test the feasibility of the method, a tool of smart

contract generation is developed. The implemented smart

contract generator and the corresponding results of this

example are shown in Figure 8. This generator can be

divided into two parts: A) parse & translate, and B) check

& export. In subparts A1 and A2, YAWL graphical

representation and YAWL roles should first be loaded.

After clicking the translation button, the information in

the YAWL and YAWL roles files is translated into the

Solidity smart contract language according to the

translation step, and the generated smart contracts are

shown in subpart A3. The generated file structure is

shown as a tree table on the left side of A3, and the

detailed codes of the corresponding smart contracts are

shown on the right side of A3. In part B, a tree table and

error message(s) are generated after checking the

generated smart contracts, and then the whole contract

folder can be exported.

Figure 7 The declared input and output variables of each task in the example

Figure 8 User Interface of smart contract language generator

277

38th International Symposium on Automation and Robotics in Construction (ISARC 2021)

The generated Solidity smart contract files can be

simply deployed and tested via the Ethereum Remix in

the browser. The test result shown in Figure 9 is after

successfully executing the Start_BU function defined in

the SC_Example contract. The start date is successfully

set as “20210627” by the contractor at the address

“0x08FeC12c561c65363bA3D59a74bA6dfB14828fEe”.

5 Conclusion and future work

Smart contracts can automate many construction

processes, such as contracting, delivery, acceptance and

payment. However, as smart contracts are programming

codes, they are difficult to be read, design, program, and

verify by non-programmers. This paper proposes a

framework for automatically generating smart contracts

from graphical representations following four steps of

parsing, translation, checking and exporting. The YAWL

graphical representation and Solidity smart contract

language are used to further explain the translation and

checking steps. An illustrative example is presented

through generating Solidity smart contracts from YAWL

for automated the reporting, checking and payment

process of construction works between clients and

contractors. The corresponding implemented smart

contract generator is illustrated and the execution result

of the generated smart contracts in the Ethereum Remix

is also displayed.

Future studies should consider a more detailed and

practical development of payment functions. For

example, in addition to using the currency in the

blockchain platform, linking with banks via smart

contracts for automatic payments could be more suitable

for the current situation. Moreover, more components of

the Solidity smart contract language (e.g., mappings,

events, abstract contracts), more smart contract checking

rules, other graphical representations (e.g., BPMN), and

other smart contract languages should be further taken

into account.

Further testing should be conducted with construction

stakeholders for feedback on the feasibility of the method

and the developed tool proposed in this paper. Compared

with the development of the entire smart contract

generation system, the development of a plugin

application or a library can be more extensible, more

convenient, and more widely used. In addition to

generating smart contracts from graphical

representations, another direction, namely translating

smart contracts to XML files or graphical representations,

should also be investigated.

Acknowledgement

The study was conducted as part of the BIMcontracts

research project funded by the German Federal Ministry

for Economic Affairs and Energy (BMWi) within the

"Smart Data Economy" technology program (project

number: 01MD19006B).

Reference

[1] Adams M., Hofstede A. H. ter, and La Rosa M.

Open Source Software for Workflow Management:

The Case of YAWL. IEEE Softw., 28(3): 16–19,

2011.

[2] Badi S., Ochieng E., Nasaj M., and Papadaki M.

Figure 9 The test result in the Ethereum Remix after successfully executing the BU_stated function

278

38th International Symposium on Automation and Robotics in Construction (ISARC 2021)

Technological, organisational and environmental

determinants of smart contracts adoption: UK

construction sector viewpoint. Construction

Management and Economics, 39(1): 36–54, 2021.

[3] Borrmann A., König M., Koch C., and Beetz J.

Building information modeling: Technology

foundations and industry practice. Springer, Cham,

Switzerland, 2018.

[4] Buterin V. A next-generation smart contract and

decentralized application platform. white paper,

3(37), 2014.

[5] G. A. Pierro. Smart-Graph: Graphical

Representations for Smart Contract on the

Ethereum Blockchain. In 2021 IEEE International

Conference on Software Analysis, Evolution and

Reengineering (SANER): 708–714, Hawaii, US,

2021.

[6] Georgakopoulos D., Hornick M., and Sheth A. An

overview of workflow management: From process

modeling to workflow automation infrastructure.

Distrib Parallel Databases, 3(2): 119–153, 1995.

[7] He X., Qin B., Zhu Y., Chen X., and Liu Y. SPESC:

A Specification Language for Smart Contracts. In

2018 IEEE 42nd Annual Computer Software and

Applications Conference (COMPSAC): 132–137,

Tokyo, Japan, 2018 - 2018.

[8] Lohmann N., Verbeek E., and Dijkman R. Petri Net

Transformations for Business Processes – A Survey.

In Transactions on Petri Nets and Other Models of

Concurrency II. Special Issue on Concurrency in

Process-Aware Information Systems. Springer,

Berlin, Heidelberg: 46–63, 2009.

[9] López-Pintado O., García-Bañuelos L., Dumas M.,

Weber I., and Ponomarev A. Caterpillar: A business

process execution engine on the Ethereum

blockchain. Softw: Pract Exper, 49(7): 1162–1193,

2019.

[10] Monteiro E., Righi R., Kunst R., Da Costa C., and

Singh D. Combining Natural Language Processing

and Blockchain for Smart Contract Generation in

the Accounting and Legal Field. In Intelligent

human computer interaction. 12th International

Conference, IHCI 2020, Proceedings, Part I and II:

307–321, Daegu, South Korea, 2021.

[11] Penzes B. Blockchain Technology in the

Construction Industry. Institution of Civil

Engineers (ICE), London, 2018.

[12] Skotnica, M., Klicpera, J., & Pergl, R. Towards

Model-Driven Smart Contract Systems–Code

Generation and Improving Expressivity of Smart

Contract Modeling. In EEWC Forum 2020, (online)

Bozen / Bolzano, Italy, 2020.

[13] Suvorov D. and Ulyantsev V. Smart Contract

Design Meets State Machine Synthesis: Case

Studies. arXiv.org, 2019.

[14] Szabo N. Smart contracts. Virtual School: 26, 1994.

[15] Tateishi T., Yoshihama S., Sato N., and Saito S.

Automatic smart contract generation using

controlled natural language and template. IBM J.

Res. & Dev., 63(2/3): 6:1-6:12, 2019.

[16] Varela-Vaca Á. J. and Quintero A. M. R. Smart

Contract Languages: A Multivocal Mapping Study.

ACM Comput. Surv., 54(1): 1–38, 2021.

[17] W.M.P. van der Aalst and A.H.M. ter Hofstede.

Workflow patterns: on the expressive power of

(Petri-net-based) workflow languages. Proceedings

of the Fourth Workshop on the Practical Use of

Coloured Petri Nets and CPN Tools (CPN 2002):

1–20, 2002.

[18] Ye X. and König M. Framework for Automated

Billing in the Construction Industry Using BIM and

Smart Contracts. In Proceedings of the 18th

International Conference on Computing in Civil

and Building Engineering. ICCCBE 2020. Springer,

Cham: 824–838, 2021.

[19] Zupan N., Kasinathan P., Cuellar J., and Sauer M.

Secure Smart Contract Generation Based on Petri

Nets. In Blockchain technology for industry 4.0.

Secure, decentralized, distributed and trusted

industry environment. Springer, Singapore: 73–98,

2020.

279

